If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+7x-54=36
We move all terms to the left:
x^2+7x-54-(36)=0
We add all the numbers together, and all the variables
x^2+7x-90=0
a = 1; b = 7; c = -90;
Δ = b2-4ac
Δ = 72-4·1·(-90)
Δ = 409
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-\sqrt{409}}{2*1}=\frac{-7-\sqrt{409}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+\sqrt{409}}{2*1}=\frac{-7+\sqrt{409}}{2} $
| X+2x-4=46 | | 6+6x=2x+20 | | 10+8q=96 | | 5+7x-21=-23 | | x^2-2x=3x+108=180 | | 10+5x=25+2x | | 30=9x+60-15x | | 3x-5(x-5)=-6+5x+3 | | 8x+13-3-3x=35 | | x=16+1/3 | | w+11=-13 | | 84.6=9(m+2.3 | | 6n-12-2n=-5n+15 | | Y=8x2-18x | | (x-4)(2x+1)=26 | | 40.45=2l+85.5(2l-4) | | x+2x-3=46 | | 7(h+3=6)(h-3) | | 7^{1-x}=4^{3x+1} | | 4/3x-4=5x | | 7^(4x-3)=23 | | 6+5x-4x-1=12 | | -5(-45h-9)=9(27h-21) | | 6x+3(x−2)=−51 | | 7^4x-3=23 | | 13k+33k-37k+13=49 | | -6x-7=-1(-9-2x) | | 12d-10d+19d-3d=90 | | y=2.35(40)+6.00 | | 14=2/3(-9x+3) | | –5+p=2p | | 14=2/3(-9x+36 |